home *** CD-ROM | disk | FTP | other *** search
- tobstack
- enter anything at all, end with an EOF(^D)
-
- unique words:
- deleted
- redundant
- with
- this
- in
- words
- the
- list
- simply
- should
- program
- The
- Obstacks
- for
- file
- test
- simple
- a
- is
- This
-
-
- Obstack vars:
- alignment_mask = 3
- chunk_size = 4080
- size = 0
- room = 4054
-
- end of test
- tstring
- an empty String:
- A string initialized to Hello:Hello
- A string initialized to previous string:Hello
- A string initialized to previous string.at(1, 2):el
- A string initialized to @:@
- A string initialized to dec(20):20
- n = 20 atoi(n) = 20 atof(n) = 20
- z = x + y = Helloworld
- x += y; x = Helloworld
- y.prepend(x); y = Helloworld
- cat(x, y, x, x); x = HelloworldHello
- cat(y, x, x, x); x = worldHelloHello
- z = x + s + + y.at(w) + y.after(w) + . = Hello, world.
- ch = x[0] = H
- z = x.at(2, 3) = llo
- x.at(2, 2) = r; x = Hero
- x.at(0, 1) = j; x = jello
- x.at(He) = je; x = jello
- x.at(l, -1) = i; x = Helio
- z = x.at(r) = ello
- z = x.before(o) = Hell
- x.before(ll) = Bri; x = Brillo
- z = x.before(2) = He
- z = x.after(Hel) = lo
- x.after(Hel) = p; x = Help
- z = x.after(3) = o
- z = a bc; z = z.after(RXwhite); z =a bc
- x.gsub(l, ll); x = Hellllo
- x.gsub(r, ...); x = Hello should have been replaced by this string
- x.gsub(RXwhite, #); x = Hello#should#have#been#replaced#by#this#string
- z = x+y; z.del(loworl); z = Held
- reverse(x) = olleH
- x.reverse() = olleH
- upcase(x) = HELLO
- downcase(x) = hello
- capitalize(x) = Hello
- z = replicate(*, 10) = **********
- z = This string has
- five words
- from split(z, RXwhite, w, 10), n words = 5:
- This
- string
- has
- five
- words
- z = join(w, nw, /); z =This/string/has/five/words
- enter a word:word =abcdefghijklmnopqrstuvwxyz length = 26
-
- End of test
- tinteger
- one = 1
- one + 1 = 2
- two = 2
- twofiftysix = 256
- fact30 = factorial(30) = 265252859812191058636308480000000
- fact28 = factorial(28) = 304888344611713860501504000000
- fact30 + fact28 = 265557748156802772496809984000000
- fact30 - fact28 = 264947971467579344775806976000000
- fact30 * fact28 = 80872505331661933764010628483512781121876047953920000000000000
- fact30 / fact28 = 870
- fact30 % fact28 = 0
- -fact30 = -265252859812191058636308480000000
- lg(fact30) = 107
- gcd(fact30, fact28) = 304888344611713860501504000000
- sqrt(fact30) = 16286585271694955
- negfact31 = -8222838654177922817725562880000000
- fact30 + negfact31 = -7957585794365731759089254400000000
- fact30 - negfact31 = 8488091513990113876361871360000000
- fact30 * negfact31 = -2181131468794922353615366650200339706856997013317222400000000000000
- fact30 / negfact31 = 0
- fact30 % negfact31 = 265252859812191058636308480000000
- gcd(fact30, negfact31) = 265252859812191058636308480000000
- fib50 = fibonacci(50) = 12586269025
- fib48 = fibonacci(48) = 4807526976
- fib48 + fib50 = 17393796001
- fib48 - fib50 = -7778742049
- fib48 * fib50 = 60508827864880718400
- fib48 / fib50 = 0
- fib48 % fib50 = 4807526976
- gcd(fib50, fib48) = 1
- sqrt(fib50) = 112188
- pow64 = Ipow(2, 64) = 18446744073709551616
- lg(pow64) = 64
- s64 = 1 << 64 = 18446744073709551616
- s32 = s64 >> 32 = 4294967296
- comps64 = ~s64 = 18446744073709551615
- comps64 & s32 = 4294967296
- comps64 | s32 = 18446744073709551615
- comps64 ^ s32 = 18446744069414584319
-
- enter an Integer: number = 1234abdecf99fed123
- enter another Integer: number = 0
- enter another Integer: number = -12345678901234567890
- 2^32 = 4294967296
- 2^32 % (2^32-1) = 1
- 2^32 % (2^32-1) = 1
-
- End of test
- trationa
- one = 1
- two = 2
- third = 1/3
- half = 1/2
- third + half = 5/6
- third - half = -1/6
- third * half = 1/6
- third / half = 2/3
- onePointTwo = 5404319552844595/4503599627370496
- double(onePointTwo) = 1.2
- a = 1
- a += half = 3/2
- a -= half = 1
- a *= half = 1/2
- a /= half = 1
- approxpi = 355/113
- double(approxpi) = 3.14159
- rpi = Rational(PI) = 884279719003555/281474976710656
- double(rpi) = 3.14159
- approxpi + rpi = 199847224979684595/31806672368304128
- approxpi - rpi = 8484881165/31806672368304128
- approxpi * rpi = 313919300246262025/31806672368304128
- approxpi / rpi = 19984723346456576/19984721649480343
- -approxpi = -355/113
- abs(negapproxpi) = 355/113
-
- enter a Rational in form a/b or a: number = 61727839/49382716
- approximating e as pow(1+1/n),n) for n =10
- double(approxe) = 2.59374
- log(approxe) = 0.953102
- approxe = 25937424601/10000000000
- approximating e as pow(1+1/n),n) for n =100
- double(approxe) = 2.70481
- log(approxe) = 0.995033
- approxe = 270481382942152609326719471080753083367793838278100277689020104911710151430673927943945601434674459097335651375483564268312519281766832427980496322329650055217977882315938008175933291885667484249510001/100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
- approximating e as pow(1+1/n),n) for n =1000
- double(approxe) = 2.71692
- log(approxe) = 0.9995
- approxe = 2716923932235892457383088121947577188964315018836572803722354774868894945523768158997885697298661429053421034015406256924859461187617653889457753593083386399572063538500432650176144488046171044844121805479607648086607018742077798375087855857012278053105042704758822511824867218226931719410407150364389665913091822576819072281835735365786202176167228686198158460724641052407506305826211156964723064441295969498221919251479211700941935114755531972677360157561485144237786816579422141378066423317811515462669946309306263409027388915931082226854264858661420878279983534424128672461206356847463821364630504359665171573635397346037274752410368174877433941234543153511100471651472869116068528478976916600585383497180172395573924789047989563714318957536493108041591460911612078698461739084741934442448701416575483263891529095158013233115648534154086009312190489168546024398834243847135102411661996020129557921444666343641039137906807591342742464200991933722791531063202677650581946360422027765645970182463780273161113009717582155489902677095053354207944772439271656447869921825959042801322775729022491402012084605367784456090892987682547811360481731795980637847551788259384243997341190753089343387201753821360405430310320564488741142120089460368986590136324737459372963666586532443570474179352656517635333744783401695951969936296323256525034685525470426185224036844803487442831639483152362831735350269624668701702424450940840884555271325190876102665277858154695092765613639718577127438538649414492678358762110235621776218781360881010654696273264706319088453035858355052988808507775439561385232652305316287705653436727647681405618323757201022946801118770148072424021385261829594248369890171583993147934044232792517118743393217276416179842097554494269012251329134783596037733973478306188255291484352384699871420472711423079586319041837563678498472779422282261024744394844558738378027105699691260086532632930941478779680554645850778168703661423819000515895232903243738763481571999080702098369316199601942246247887808385073821861517636839926907458184604648942036355256683219218129910422822177336785268627274482037476294341444562207197209503659518266210432791078248321015453218019586608696207295299183111963158564162419152742807437346241667671688466998244424726765837682151606230638111654756595917019206453978024157097042546937345673337179165242325399648121877178987723999503839197328183925340949191821443698275476295245249466361817367207248089144718808572152781037112209285944844021186534832159964297181970584453756163204297111185823467744743465840230098261424789313315093951766314459027947176701489215746884363426961577348384651887153140609616362927338107686794499974902581579897076172716541504294334300741444106749994715713419630688719451362658288812132056854807330827050505064714442618243101018812153563795539024370219967801515099970721926240625418512417940854760415566229746248973756297569452302821563467574313259066016089521122779204844875998864114930516063910324359331903843040069467324167490917499501000001/1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
-
- End of test
- tcomplex
- Complex one = (1, 0)
- i = (0, 1)
- neg_one = (-1, 0)
- sqrt(neg_one) = (0, 1)
- a = (2, 3)
- b = (4, 5)
- a + one = (3, 3)
- a - one = (1, 3)
- a * one = (2, 3)
- a / one = (2, 3)
- a + b = (6, 8)
- a - b = (-2, -2)
- a * b = (-7, 22)
- a / b = (0.560976, 0.0487805)
- c = a; c += b = (6, 8)
- c = a; c -= b = (-2, -2)
- c = a; c *= b = (-7, 22)
- c = a; c /= b = (0.560976, 0.0487805)
- -a = (-2, -3)
- real(a) = 2
- imag(a) = 3
- conj(a) = (2, -3)
- norm(a) = 13
- abs(a) = 3.60555
- arg(a) = 0.982794
- cos(a) = (-4.18963, -9.10923)
- sin(a) = (9.1545, -4.16891)
- cosh(a) = (-3.72455, 0.511823)
- sinh(a) = (-3.59056, 0.530921)
- log(a) = (1.28247, 0.982794)
- exp(a) = (-7.31511, 1.04274)
- sqrt(a) = (1.67415, 0.895977)
- pow(a, 2) = (-5, 12)
- pow(a, b) = (-0.753046, -0.986429)
- enter a Complex number in form (a, b) or (a) or a: number = (1.2, -34)
-
- End of test
- tbitset
- BitSet tests:
- a = 0*
- b = 000000000010*
- c = 1010101010101010101010101010101010101010*
- c[0] =1
- c[1] =0
- c[2] =1
- c[3] =0
- c[4] =1
- d = 00110011001100110011001100110011001100110*
- e = 1111000011110000111100001111000011110*
- u = ~a = 1*
- g = ~e = 0000111100001111000011110000111100001*
- ~c = 0101010101010101010101010101010101010101*
- c & d = 0010001000100010001000100010001000100010*
- c | d = 10111011101110111011101110111011101110110*
- c - d = 10001000100010001000100010001000100010*
- c ^ d = 10011001100110011001100110011001100110010*
- f = b = 100000000010*
- f &= c = 100000000010*
- f |= d = 10110011001100110011001100110011001100110*
- f -= e = 00000011000000110000001100000011000000110*
- f ^= u = 11111100111111001111110011111100111111001*
- h = d
- :00110011001100110011001100110011001100110*
- h.set(0):
- 10110011001100110011001100110011001100110*
- h.set(65):
- 1011001100110011001100110011001100110011000000000000000000000000010*
- h.clear(2):
- 1001001100110011001100110011001100110011000000000000000000000000010*
- h.invert(11,20):
- 1001001100101100110010110011001100110011000000000000000000000000010*
- h.set(21,30):
- 1001001100101100110011111111111100110011000000000000000000000000010*
- h.clear(31, 40):
- 1001001100101100110011111111111000000000000000000000000000000000010*
- h.test(0,5) = 1
- h.test(31,40) = 0
- set bits in e:
- 0 1 2 3 8 9 10 11 16 17 18 19 24 25 26 27 32 33 34 35
- clear bits in g (reverse order):
- 35 34 33 32 27 26 25 24 19 18 17 16 11 10 9 8 3 2 1 0
-
- End of test.
- tbitstri
- a =
- b = 1000000001
- c = 10101010101010101010
- d = 00110011001100110011
- e = 11110000111100001111
- f = b = 1000000001
- g = ~e = 00001111000011110000
- h = d = 00110011001100110011
- bits in e:
- 0 1 2 3 8 9 10 11 16 17 18 19
- clear bits in g (reverse order):
- 19 18 17 16 11 10 9 8 3 2 1 0
- ~c = 01010101010101010101
- c & d = 00100010001000100010
- c | d = 10111011101110111011
- c - d = 10001000100010001000
- c ^ d = 10011001100110011001
- c + d = 1010101010101010101000110011001100110011
- c <<2 = 0010101010101010101010
- c >>2 = 101010101010101010
- f &= c = 1000000000
- f |= d = 10110011001100110011
- f -= e = 10000000000000000000
- f ^= c = 00101010101010101010
- f += b = 001010101010101010101000000001
- f <<=5 = 00000001010101010101010101000000001
- f >>=10= 0101010101010101000000001
- l = 101010101010101010100011001100110011001110101010101010101010
- BitPattern pat = 0011XXXX0011XXXX0011
- pat.pattern = 00110011001100110011
- pat.mask = 11110000111100001111
- l.index(pat) = 20
- l.index(pat,-1)= 20
- l.before(pat) = 10101010101010101010
- l.at(pat) = 00110011001100110011
- l.after(pat) = 10101010101010101010
- b.set(0) :1000000001
- b.set(65):
- 100000000100000000000000000000000000000000000000000000000000000001
- b.clear(2):
- 100000000100000000000000000000000000000000000000000000000000000001
- b.invert(11,20):
- 100000000100111111111000000000000000000000000000000000000000000001
- b.set(21,30):
- 100000000100111111111111111111100000000000000000000000000000000001
- b.clear(31, 40):
- 100000000100111111111111111111100000000000000000000000000000000001
- b.set(0) :10110011001100110011
- b.set(65):
- 101100110011001100110000000000000000000000000000000000000000000001
- b.clear(2):
- 100100110011001100110000000000000000000000000000000000000000000001
- b.invert(11,20):
- 100100110010110011001000000000000000000000000000000000000000000001
- b.set(21,30):
- 100100110010110011001111111111100000000000000000000000000000000001
- b.clear(31, 40):
- 100100110010110011001111111111100000000000000000000000000000000001
- k = 0101
- c.before(k) = 1
- c.at(k) = 0101
- c.after(k) = 010101010101010
- c.after(k)=k :101010101
- c.before(k)=k:010101010101
- reverse(k) = 1010
- k.left_trim(0) : 101
- k.right_trim(1) : 10
- k = 0110
- c.before(k) = 0
- c.at(k) = 0110
- c.after(k) = 011001100110011
- c.after(k)=k :001100110
- c.before(k)=k:011001100110
- reverse(k) = 0110
- k.left_trim(0) : 110
- k.right_trim(1) : 110
-
- End of test.
- trandom
- five random ACG integers:
- 1525072166 1954057046 3406008937 226879594 4107049426
- five random MLCG integers:
- 1341853672 83475514 936613571 888739672 2097844081
- Binomial r1( 100, 0.50, &gen1) ...
- five samples:
- 45 52 59 49 60
- Statistics for 100 samples:
- samples: 100 min: 40 max: 64
- mean: 50.78 stdDev: 4.42577 var: 19.5875 confidence(95): 0.878369
- Erlang r2( 2.0, 0.5, &gen1) ...
- five samples:
- 1.79909 1.92989 2.50816 2.31409 1.48158
- Statistics for 100 samples:
- samples: 100 min: 0.592645 max: 3.81874
- mean: 1.96664 stdDev: 0.696406 var: 0.484981 confidence(95): 0.138213
- Geometric r3(&gen1, 0.5)...
- five samples:
- 3 2 2 2 3
- Statistics for 100 samples:
- samples: 100 min: 1 max: 7
- mean: 1.9 stdDev: 1.28315 var: 1.64646 confidence(95): 0.254662
- HyperGeometric r4( 10.0, 150.0, &gen1)...
- five samples:
- 15.0752 5.25802 7.82211 20.4995 7.08199
- Statistics for 100 samples:
- samples: 100 min: 0.0446068 max: 131.508
- mean: 12.6763 stdDev: 16.7567 var: 280.786 confidence(95): 3.32564
- NegativeExpntl r5( 1.0, &gen1)...
- five samples:
- 1.90665 0.0921974 0.219318 1.79202 0.566202
- Statistics for 100 samples:
- samples: 100 min: 0.00794624 max: 4.23124
- mean: 0.927343 stdDev: 0.8869 var: 0.786592 confidence(95): 0.17602
- Normal r6( 0.0, 1.0, &gen1)...
- five samples:
- -0.174892 0.148871 -0.479753 0.65432 -0.92688
- Statistics for 100 samples:
- samples: 100 min: -2.22325 max: 2.61771
- mean: 0.141292 stdDev: 0.972041 var: 0.944864 confidence(95): 0.192918
- LogNormal r7( 1.0, 1.0, &gen1)...
- five samples:
- 2.15572 0.985688 0.340019 0.959144 1.06052
- Statistics for 100 samples:
- samples: 100 min: 0.0393323 max: 6.16358
- mean: 1.03547 stdDev: 0.963892 var: 0.929088 confidence(95): 0.191301
- Poisson r8( 2.0, &gen1)...
- five samples:
- 0 2 1 2 1
- Statistics for 100 samples:
- samples: 100 min: 0 max: 5
- mean: 2 stdDev: 1.31041 var: 1.71717 confidence(95): 0.260073
- DiscreteUniform r9( 0.0, 1.0, &gen1)...
- five samples:
- 1 1 0 0 0
- Statistics for 100 samples:
- samples: 100 min: 0 max: 1
- mean: 0.45 stdDev: 0.5 var: 0.25 confidence(95): 0.0992334
- Uniform r10( 0.0, 1.0, &gen1)...
- five samples:
- 0.557314 0.529968 0.997197 0.25163 0.947497
- Statistics for 100 samples:
- samples: 100 min: 0.00205286 max: 0.997197
- mean: 0.518789 stdDev: 0.321429 var: 0.103317 confidence(95): 0.0637931
- Weibull r11( 0.5, 1.0, &gen1)...
- five samples:
- 10.4918 0.295112 0.184577 2.14799 0.10053
- Statistics for 100 samples:
- samples: 100 min: 0.000236481 max: 15.4934
- mean: 1.96369 stdDev: 2.97642 var: 8.85906 confidence(95): 0.59072
- SampleHistogram for 100 Normal samples
- < -4 : 0
- < -3.2 : 0
- < -2.4 : 0
- < -1.6 : 7
- < -0.8 : 15
- < -2.22045e-16 : 36
- < 0.8 : 15
- < 1.6 : 19
- < 2.4 : 7
- < 3.2 : 1
- < 4 : 0
- < max : 0
-
- End of test
- tfix
- Fix: identities should be displayed
- [X] displays the precision of a given value
- [*] indicates that the full precision is not used for coding reasons
- 0 [16] = 0.00000 [16]
- .5 [16] = 0.50000 [16]
- -.5 [17] = -0.50000 [17]
- .1 [33] = 0.10000 [33]
- -.5 [17] = -0.50000 [17]
- .3 [16] = 0.29999 [16]
- .5 [16] = 0.50000 [16]
- .1 [16] = 0.09998 [16]
- .1 [33*] = 0.09998 [33]
- -.2 [17] = -0.20001 [17]
- -.5 [17] = -0.50000 [17]
- .1 [16] == .1 [33*] = 1
- .1 [16] == .1 [33] = 0
- .1 [33] != .5 [16] = 1
- .1 [33] > .5 [16] = 0
- .1 [33] <= -.2 [17] = 0
- 1073741824 = 1.07374e+09
- .5 = 0.5
- .5 [17] = 0.50000 [17]
- -.5 [17] = -0.50000 [17]
- .1 [33] + .5 [16] = 0.60000 [33]
- .1 [33] - .5 [16] = -0.40000 [33]
- .1 [33] * .5 [16] = 0.05000 [49]
- .1 [33] * 3 = 0.30000 [33]
- .1 [33] * -3 = -0.30000 [33]
- -.1 [33] * 3 = -0.30000 [33]
- -.1 [33] * -3 = 0.30000 [33]
- .5 [17] * -2 = -1.00000 [17]
- .1 [33] % 25 = 0.10000 [58]
- .1 [33] % -25 = 0.09375 [8]
- .1 [33] / .5 [16] = 0.20001 [33]
- .1 [33] << 1 = 0.20000 [33]
- -.1 [33] >> 2 = 0.47500 [33]
- abs(-.2) = 0.20001 [17]
- abs(.2) = 0.20001 [17]
- sgn(-.2) = -1
- sgn(.2) = 1
-
- show .1 [33]
- len = 33
- siz = 3
- ref = 1
- man = ccccccc8000
- val = 0.1
-
- Fix: range errors warned
- 1.1 [16] = 0.00000 [16]
- .5 [16] / .1 [33] = 0.00000 [16]
- .5 [16] / 0. [16] = 0.00000 [16]
- .5 [17] * 32768 = -1.00000 [17]
-
- Fix: overflows saturated
- .95 [16] + .1 [33] = 1.00000 [33]
- -.1 [33] - .95 [16] = -1.00000 [33]
- .5 [17] * 2 = 0.99998 [17]
-
- Fix: overflows generate warnings
- .95 [16] + .1 [33] = -0.94999 [33]
- -.1 [33] - .95 [16] = 0.94999 [33]
- .5 [17] * 2 = -0.49994 [17]
- tfix16
- Fix16: identities should be displayed
- 0 = 0
- .5 = 0.5
- -.5 = -0.5
- .1 = 0.100006
- .5 = 0.5
- .5 = 0.5
- .25 = 0.25
- 8192 = 8192
- .25 = 0.25
- .25 = 0.25
- .25 = 0.25
- -.25 = -0.25
- .1 + .5 = 0.600006
- .1 - .5 = -0.399994
- .1 * .5 = 0.0500031
- .1 * 3 = 0.300018
- .1 * -3 = -0.300018
- .1 / .5 = 0.200012
- .1 << 1 = 0.200012
- -.5 >> 2 = -0.125
- .1 == .5 = 0
- .1 != .5 = 1
- .1 > .5 = 0
- .5 <= -.5 = 0
- Fix16: range errors ignored and overflows saturated
- 1.1 = 0.999969
- .7 + .5 = 0.999969
- -.5 - .7 = -1
- .5 / .1 = 0.999969
- Fix32: identities should be displayed
- 0 = 0
- .5 = 0.5
- -.5 = -0.5
- .1 = 0.1
- .5 = 0.5
- .5 = 0.5
- .25 = 0.25
- 536870912 = 536870912
- .25 = 0.25
- .25 = 0.25
- .25 = 0.25
- -.25 = -0.25
- .1 + .5 = 0.6
- .1 - .5 = -0.4
- .1 * .5 = 0.05
- .1 * 3 = 0.3
- .1 * -3 = -0.3
- .1 / .5 = 0.2
- .1 << 1 = 0.2
- -.5 >> 2 = -0.125
- .1 == .5 = 0
- .1 != .5 = 1
- .1 > .5 = 0
- .5 <= -.5 = 0
- Fix32: range errors reported and overflows reported
- 1.1 = 1
- .7 + .5 = -0.8
- -.5 - .7 = 0.8
- .5 / .1 = 1
- tfix24
- Fix24: identities should be displayed
- 0 = 0
- .5 = 0.5
- -.5 = -0.5
- .1 = 0.1
- .5 = 0.5
- .5 = 0.5
- .25 = 0.25
- 536870912 = 536870912
- .25 = 0.25
- .25 = 0.25
- .25 = 0.25
- -.25 = -0.25
- .1 + .5 = 0.6
- .1 - .5 = -0.4
- .1 * .5 = 0.05
- .1 * 3 = 0.3
- .1 * -3 = -0.3
- .1 / .5 = 0.2
- .1 << 1 = 0.2
- -.5 >> 2 = -0.125
- .1 == .5 = 0
- .1 != .5 = 1
- .1 > .5 = 0
- .5 <= -.5 = 0
- Fix24: range errors ignored and overflows saturated
- 1.1 = 1
- .7 + .5 = 1
- -.5 - .7 = -1
- .5 / .1 = 1
- Fix48: identities should be displayed
- 0 = 0
- .5 = 0.5
- -.5 = -0.5
- .1 = 0.1
- .5 = 0.5
- .5 = 0.5
- .25 = 0.25
- 536870912 = 536870912
- 0 = 0
- .25 = 0.25
- .25 = 0.25
- .25 = 0.25
- -.25 = -0.25
- .1 + .5 = 0.6
- .1 - .5 = -0.4
- .1 * 3 = 0.3
- .1 * -3 = -0.3
- .1 << 1 = 0.2
- -.5 >> 2 = -0.125
- .1 == .5 = 0
- .1 != .5 = 1
- .1 > .5 = 0
- .5 <= -.5 = 0
- Fix48: range errors reported and overflows reported
- 1.1 = 1
- .7 + .5 = -0.8
- -.5 - .7 = 0.8
- tillist
- prepending...
- a: 9 8 7 6 5 4 3 2 1 0
- appending...
- a: 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9
- b = a:
- 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9
- remove_front of first 10 elements:
- b: 0 1 2 3 4 5 6 7 8 9
- inserting 100 after sixth element...
- b: 0 1 2 3 4 5 100 6 7 8 9
- after a.join(b)
- 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 100 6 7 8 9
- b:
-
- b:
- 999
- bb:
- 999
- prepending...
- a:
- 9 8 7 6 5 4 3 2 1 0
- appending...
- a: 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9
- b = a: 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9
- remove_front of first 10 elements:
- b: 0 1 2 3 4 5 6 7 8 9
- inserting 100 after sixth element...
- b: 0 1 2 3 4 5 100 6 7 8 9
- after aa = a; aa.join(b)
- 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 100 6 7 8 9
- b:
-
- b:
- 999
- bb:
- 999
- z = a: 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9
- remove_rear of last 10 elements:
- z: 9 8 7 6 5 4 3 2 1 0
- inserting 100 before alternate elements...
- z: 100 9 100 8 100 7 100 6 100 5 100 4 100 3 100 2 100 1 100 0
- inserting 200 after sixth element...
- z: 100 9 100 8 100 7 200 100 6 100 5 100 4 100 3 100 2 100 1 100 0
- deleting alternate elements of z...100 100 100 200 6 5 4 3 2 1 0
- z: 9 8 7 100 100 100 100 100 100 100
- z in reverse order:
- 100 100 100 100 100 100 100 7 8 9
-
- End of test
-